
IT DEPT-Artificial Intelligence and Data Science Lab Page 1

ARTIFICIAL INTELLIGENCE & DATA SCIENCE LAB

(R20A1281)

LABORATORY MANUAL

 B.TECH

(III YEAR–I SEM)

(2023-2024)

 PREPARED BY

 T.SHILPA

 P.V.NARESH

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution–UGC,Govt.ofIndia)

Recognized under2(f)and12(B) of UGCACT1956
Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA Tier 1 & NAAC – ‘A’
Grade - ISO 9001:2015Certified) Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–

500100,TelanganaState,India

IT DEPT-Artificial Intelligence and Data Science Lab Page 2

DEPARTMENT OF INFORMATION TECHNOLOGY

Vision & Mission

Vision

* To achieve high quality in technical education that provides the skills and attitude to

adapt to the global needs of the Information Technology sector, through academic and

research excellence.

Mission

* To equip the students with the cognizance for problem solving and to improve the

teaching learning pedagogy by using innovative techniques.

* To strengthen the knowledge base of the faculty and students with motivation towards

possession of effective academic skills and relevant research experience.

* To promote the necessary moral and ethical values among the engineers, for the

betterment of the society.

Quality Policy

* Strives to inculcate the students with the world class Technical Knowledge,

Entrepreneurial Competence and Social Ethics by providing continual improvement and

innovation in the curriculum; based upon well-defined measurements and best practices.

* Develop faculty competencies, creativity, empowerment and accountability through

faculty development programs and show strong management involvement and

commitment.

IT DEPT-Artificial Intelligence and Data Science Lab Page 3

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS:

 To facilitate the graduates with the ability to visualize, gather information,

articulate, analyze, solve complex problems, and make decisions. These are

essential to address the challenges of complex and computation intensive problems

increasing their productivity.

PEO2 – TECHNICAL SKILLS:

 To facilitate the graduates with the technical skills that prepare them for immediate

employment and pursue certification providing a deeper understanding of the

technology in advanced areas of computer science and related fields, thus

encouraging to pursue higher education and research based on their interest.

PEO3 – SOFT SKILLS:

 To facilitate the graduates with the soft skills that include fulfilling the mission,

setting goals, showing self-confidence by communicating effectively, having a

positive attitude, get involved in team-work, being a leader, managing their career

and their life.

PEO4 – PROFESSIONAL ETHICS:

 To facilitate the graduates with the knowledge of professional and ethical

responsibilities by paying attention to grooming, being conservative with style,

following dress codes, safety codes, and adapting to technological advancements.

IT DEPT-Artificial Intelligence and Data Science Lab Page 4

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have

the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to

Understand the working principles of the computer System and its components , Apply the

knowledge to build, asses, and analyze the software and hardware aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the software and

hardware intensive systems in heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development processes,

identify the research gaps, and provide innovative solutions to them.

IT DEPT-Artificial Intelligence and Data Science Lab Page 5

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an

understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance : Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multi disciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change

IT DEPT-Artificial Intelligence and Data Science Lab Page 6

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda,DhulapallyPost,ViaHakimpet,Secunderabad–500100

DEPARTMENT OF INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

DEPARTMENT OF INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting time),those

who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the

synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm, Procedure,

Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed

in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer systemallotted

to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation notebook,

and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which should beutilized

properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions.

Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severepunishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybodyfound

loitering outside the lab / class without permission during working hours will be treated seriously and

punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is keptproperly.

HEAD OF THE DEPARTMENT PRINCIPAL

IT DEPT-Artificial Intelligence and Data Science Lab Page 7

INDEX

S.No LIST OF PROGRAMS PAGE NO

 Artificial Intelligence : Prolog Programming

1 Write a Prolog program for the usage of all arithmetic

Operators.

9

2 Write a Prolog program for solving the Towers of Hanoi

problem

11

3 Write a Prolog program to solve Monkey and banana problem. 14

4 Write a Prolog program for depicting and inferring from

the given Family relationship

18

5 Write a Prolog program for implementing the solution for

8-Puzzle problem.

23

6 Construct Prolog program to implement Depth first and

Breadth first Search

27

 Data Science : R Programming

1 a.Write a R program to create a list containing strings,

numbers, vectors and logical values.

30

b.Write a R program to merge two given lists into one

list.

32

c. Write a R program to create a list containing a vector, a matrix

and a list and give names to the elements in the list. Access the first

and second element of the list.

34

2 a. Write a R program to find factors of a number 36

b. Write a R program to create an ordered factor from data

consisting of the names of months.
38

c.write a R program to Read the data from same and

different directory.

40

3 a.Write a R program to read a CSV file 43

b.Write R program to read Text file 44

c.Write a R Program to read and load data from larger

datasets

45

4 Install the necessary R packages and apply data

manipulation packages- dplyr, data.table, reshape2, tidyr,

Lubridate.

47

IT DEPT-Artificial Intelligence and Data Science Lab Page 8

5 Write R Programs to implement decision tree and K-

Nearest Neighbor algorithms.

64

6 Build a linear regression model and logistic regression

model, check the model on a test data and predict the

numerical quantities.

75

IT DEPT-Artificial Intelligence and Data Science Lab Page 9

ARTIFICIAL INTELLIGENCE : PROLOG PROGRAMMING

1) Write a Prolog program for the usage of all arithmetic Operators.

Program:

Calculate: - X is 100 + 200, write('100 + 200 is '),write(X),nl,

Y is 400 - 150, write('400 - 150 is '),write(Y),nl,

Z is 10 * 300, write('10 * 300 is'),write(Z),nl,

A is 100 / 30,write('100 / 30 is '),write(A),nl,

B is 100 // 30,write('100 // 30'),write(B),nl,

C is 100 ** 2,write('100 ** 2'),write(C),nl,

D is 100 mod 30,write('100 mod 30 is '),write(D),nl.

Output:

Compiling C:/GNU-Prolog/bin/art.pl for byte code...

C:/GNU-Prolog/bin/art.pl compiled, 6 lines read - 2356 bytes written, 6 ms

| ?- calculate.

100 + 200 is 300

400 - 150 is 250

10 * 300 is3000

100 / 30 is 3.3333333333333335

100 // 303

100 ** 210000.0

100 mod 30 is 10

IT DEPT-Artificial Intelligence and Data Science Lab Page 10

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 11

2. Write a Prolog program for solving the Towers of Hanoi problem.

Program:

move(1,X,Y,_) :-

write('Move top disk from'),

write(X),

write(' to '),

write(Y),

nl.

move(N,X,Y,Z) :-
N>1,

M is N-1,

move(M,X,Z,Y),

move(1,X,Y,_),

move(M,Z,Y,X).

output:

compiling C:/GNU-Prolog/bin/tower.pl for byte code...

C:/GNU-Prolog/bin/tower.pl compiled, 11 lines read - 1375 bytes written, 5 ms

| ?- listing.

% file: C:/GNU-Prolog/bin/tower.pl

move(1, A, B, _) :-

write('Move top disk from'),
write(A),

write(' to '),

write(B),

nl.

move(A, B, C, D) :-

A > 1,

E is A - 1,

move(E, B, D, C),

move(1, B, C, _),

move(E, D, C, B).

yes
| ?- move(3,source,target,interm).

Move top disk from source to target

Move top disk from source to interm

Move top disk from target to interm

Move top disk from source to target

Move top disk from interm to source

Move top disk from interm to target

Move top disk from source to target

IT DEPT-Artificial Intelligence and Data Science Lab Page 12

IT DEPT-Artificial Intelligence and Data Science Lab Page 13

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 14

3. Write a Prolog program to solve Monkey and banana problem.

Program:
move(state(middle,onbox,middle,hasnot),

grasp,state(middle,onbox,middle,has)).

move(state(P,onfloor,P,H),

climb,

state(P,onbox,P,H)).

move(state(P1,onfloor,P1,H),

push(P1,P2),

state(P2,onfloor,P2,H)).

move(state(P1,onfloor,B,H),

walk(P1,P2),

state(P2,onfloor,B,H)).

canget(state(_,_,_,has)).

canget(State1) :-

move(State1,_,State2),

canget(State2).

Output:
compiling C:/GNU-Prolog/bin/monkey.pl for byte code...
C:/GNU-Prolog/bin/monkey.pl compiled, 16 lines read - 2137 bytes written, 7 ms

| ?- [monkey].

compiling C:/GNU-Prolog/bin/monkey.pl for byte code...

C:/GNU-Prolog/bin/monkey.pl compiled, 16 lines read - 2137 bytes written, 5 ms

yes

| ?- canget(state(atdoor,onfloor,atwindow,hasnot)).

true ?

yes

| ?- trace.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- canget(state(atdoor,onfloor,atwindow,hasnot)).

1 1 Call: canget(state(atdoor,onfloor,atwindow,hasnot)) ?

2 2 Call: move(state(atdoor,onfloor,atwindow,hasnot),_71,_111) ?

2 2 Exit:

move(state(atdoor,onfloor,atwindow,hasnot),walk(atdoor,_99),state(_99,onfloor,atwindow,hasnot)) ?

3 2 Call: canget(state(_99,onfloor,atwindow,hasnot)) ?

4 3 Call: move(state(_99,onfloor,atwindow,hasnot),_129,_169) ?

4 3 Exit: move(state(atwindow,onfloor,atwindow,hasnot),climb,state(atwindow,onbox,atwindow,hasnot))

IT DEPT-Artificial Intelligence and Data Science Lab Page 15

?

5 3 Call: canget(state(atwindow,onbox,atwindow,hasnot)) ?

6 4 Call: move(state(atwindow,onbox,atwindow,hasnot),_184,_224) ?

6 4 Fail: move(state(atwindow,onbox,atwindow,hasnot),_184,_212) ?

5 3 Fail: canget(state(atwindow,onbox,atwindow,hasnot)) ?

4 3 Redo:

move(state(atwindow,onfloor,atwindow,hasnot),climb,state(atwindow,onbox,atwindow,hasnot))

?
4 3 Exit:

move(state(atwindow,onfloor,atwindow,hasnot),push(atwindow,_157),state(_157,onfloor,_157,hasnot

)) ?

5 3 Call: canget(state(_157,onfloor,_157,hasnot)) ?

6 4 Call: move(state(_157,onfloor,_157,hasnot),_187,_227) ?

6 4 Exit: move(state(_157,onfloor,_157,hasnot),climb,state(_157,onbox,_157,hasnot)) ?

7 4 Call: canget(state(_157,onbox,_157,hasnot)) ?
8 5 Call: move(state(_157,onbox,_157,hasnot),_242,_282) ?

8 5 Exit: move(state(middle,onbox,middle,hasnot),grasp,state(middle,onbox,middle,has)) ?

9 5 Call: canget(state(middle,onbox,middle,has)) ?

9 5 Exit: canget(state(middle,onbox,middle,has)) ?

7 4 Exit: canget(state(middle,onbox,middle,hasnot)) ?

5 3 Exit: canget(state(middle,onfloor,middle,hasnot)) ?

3 2 Exit: canget(state(atwindow,onfloor,atwindow,hasnot)) ?

1. 1 Exit: canget(state(atdoor,onfloor,atwindow,hasnot)) ?

IT DEPT-Artificial Intelligence and Data Science Lab Page 16

IT DEPT-Artificial Intelligence and Data Science Lab Page 17

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 18

4. Write a Prolog program for depicting and inferring from the given Family relationship

diagram.

Program:

% This program depicts family relationships...
/*

domains

name=symbol

predicates

parent(name,name)

female(name)

male(name)

mother(name,name)

father(name,name)

haschild(name)

sister(name,name)

brother(name,name)

clauses

*/

female(pam).

female(liz).

female(pat).

female(ann).

male(jim).

male(bob).

male(tom).

male(peter).

parent(pam,bob).

parent(tom,bob).

IT DEPT-Artificial Intelligence and Data Science Lab Page 19

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

parent(bob,peter).

parent(peter,jim).

mother(X,Y):-parent(X,Y),female(X).

father(X,Y):-parent(X,Y),male(X).

haschild(X):-parent(X,_).

sister(X,Y):-parent(Z,X),parent(Z,Y),female(X),X\==Y.

brother(X,Y):-parent(Z,X),parent(Z,Y),male(X),X\==Y.

Output:

compiling C:/GNU-Prolog/bin/rel.pl for byte code...

C:/GNU-Prolog/bin/rel.pl compiled, 24 lines read - 3066 bytes written, 10 ms

| ?- parent(X,jim).

X = pat ? ;

X = peter

(16 ms) yes

| ?- mother(X,Y).

X = pam

Y = bob ?

yes

| ?- mother(X,Y).

X = pam

Y = bob ? ;

X = pat

Y = jim ?

yes

| ?- haschild(X).

X = pam ? ;

X = tom ? ;

X = tom ? ;

X = bob ?

yes

| ?- haschild(X).

IT DEPT-Artificial Intelligence and Data Science Lab Page 20

X = pam ? ;

X = tom ? ;

X = tom ? ;

X = bob ? ;

X = bob ? ;

X = pat ? ;

X = bob ? ;

X = peter

(47 ms) yes

| ?- brother(X,Y).

X = bob

Y = liz ? ;

X = peter

Y = ann ? ;

X = peter

Y = pat ? ;

(15 ms) no

IT DEPT-Artificial Intelligence and Data Science Lab Page 21

IT DEPT-Artificial Intelligence and Data Science Lab Page 22

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 23

5. Write a Prolog program for implementing the solution for 8-Puzzle problem.

Program:

goal([1,2,3,4,0,5,6,7,8]).

% move empty spot left in the top row
move([P1,0,P3, P4,P5,P6, P7,P8,P9],

[0,P1,P3, P4,P5,P6, P7,P8,P9]).

move([P1,P2,0, P4,P5,P6, P7,P8,P9],

[P1,0,P2, P4,P5,P6, P7,P8,P9]).

% move empty spot left in the middle row
move([P1,P2,P3, P4,0,P6, P7,P8,P9],

[P1,P2,P3, 0,P4,P6, P7,P8,P9]).

move([P1,P2,P3, P4,P5,0, P7,P8,P9],

[P1,P2,P3, P4,0,P5, P7,P8,P9]).

% move empty spot left in the bottom row

move([P1,P2,P3, P4,P5,P6, P7,0,P9],

[P1,P2,P3, P4,P5,P6, 0,P7,P9]).

move([P1,P2,P3, P4,P5,P6, P7,P8,0],
[P1,P2,P3, P4,P5,P6, P7,0,P8]).

% move empty spot right in the top row

move([0,P2,P3, P4,P5,P6, P7,P8,P9],

[P2,0,P3, P4,P5,P6, P7,P8,P9]).

move([P1,0,P3, P4,P5,P6, P7,P8,P9],
[P1,P3,0, P4,P5,P6, P7,P8,P9]).

% move empty spot right in the middle row

move([P1,P2,P3, 0,P5,P6, P7,P8,P9],

[P1,P2,P3, P5,0,P6, P7,P8,P9]).
move([P1,P2,P3, P4,0,P6, P7,P8,P9],

[P1,P2,P3, P4,P6,0, P7,P8,P9]).

% move empty spot RIGHT in the bottom row

move([P1,P2,P3, P4,P5,P6, 0,P8,P9],

[P1,P2,P3, P4,P5,P6, P8,0,P9]).

move([P1,P2,P3, P4,P5,P6, P7,0,P9],
[P1,P2,P3, P4,P5,P6, P7,P9,0]).

% move empty spot UP FROM the middle row

move([P1,P2,P3, 0,P5,P6, P7,P8,P9],

[0,P2,P3, P1,P5,P6, P7,P8,P9]).

move([P1,P2,P3, P4,0,P6, P7,P8,P9],

[P1,0,P3, P4,P2,P6, P7,P8,P9]).

IT DEPT-Artificial Intelligence and Data Science Lab Page 24

move([P1,P2,P3, P4,P5,0, P7,P8,P9],

[P1,P2,0, P4,P5,P3, P7,P8,P9]).

% move empty spot UP FROM the bottom row
move([P1,P2,P3, P4,P5,P6, P7,0,P9],

[P1,P2,P3, P4,0,P6, P7,P5,P9]).

move([P1,P2,P3, P4,P5,P6, P7,P8,0],

[P1,P2,P3, P4,P5,0, P7,P8,P6]).

move([P1,P2,P3, P4,P5,P6, 0,P8,P9],
[P1,P2,P3, 0,P5,P6, P4,P8,P6]).

% move empty spot DOWN FROM in the top row

move([0,P2,P3, P4,P5,P6, P7,P8,P9],

[P4,P2,P3, 0,P5,P6, P7,P8,P9]).

move([P1,0,P3, P4,P5,P6, P7,P8,P9],

[P1,P5,P3, P4,0,P6, P7,P8,P9]).

move([P1,P2,0, P4,P5,P6, P7,P8,P9],

[P1,P2,P6, P4,P5,0, P7,P8,P9]).

% move empty spot DOWN FROM the middle row

move([P1,P2,P3, 0,P5,P6, P7,P8,P9],

[P1,P2,P3, P7,P5,P6, 0,P8,P9]).

move([P1,P2,P3, P4,0,P6, P7,P8,P9],

[P1,P2,P3, P4,P8,P6, P7,0,P9]).

move([P1,P2,P3, P4,P5,0, P7,P8,P9],

[P1,P2,P3, P4,P5,P9, P7,P8,0]).

dfsSimplest(S, [S]) :- goal(S).

dfsSimplest(S, [S|Rest]) :-

move(S, S2),

dfsSimplest(S2, Rest).

dfs(S, Path, Path) :- goal(S).

dfs(S,Checked,Path) :-

% Let us try for a move

move(S,S2),

% ensure the resulting state is a new state

\+member(S2,Checked),
% and that this state leads to the goal

dfs(S2, [S2|Checked], Path).

IT DEPT-Artificial Intelligence and Data Science Lab Page 25

Output:
compiling C:/GNU-Prolog/bin/8puzzle.pl for byte code...

C:/GNU-Prolog/bin/8puzzle.pl:54-55: warning: singleton variables [P9] for move/2

C:/GNU-Prolog/bin/8puzzle.pl compiled, 85 lines read - 23872 bytes written, 12 ms

| ?- dfsSimplest([1,2,3, 0,4,5, 6,7,8], Path).

Path = [[1,2,3,0,4,5,6,7,8],[1,2,3,4,0,5,6,7,8]] ?

yes

| ?- dfs([1,2,3,0,4,5,6,7,8], [], Path).
Path = [[1,2,3,4,0,5,6,7,8]] ?

yes

| ?- dfs([1,2,3, 0,4,5, 6,7,8], [], Path),length(Path,N).

N = 1

Path = [[1,2,3,4,0,5,6,7,8]] ?

IT DEPT-Artificial Intelligence and Data Science Lab Page 26

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 27

6. Construct Prolog program to implement Depth first and Breadth first Search.

Program: DFS

s(a,b).

s(a,c).

s(b,d).

s(b,e).

s(c,f).

s(c,g).

s(d,h).

s(e,i).

s(e,j).

s(f,k).

goal(f).

goal(j).

member(X,[X | _]).

member(X,[_|Tail]):-member(X,Tail).

solve(Node,Solution):-

depthfirst([],Node,Solution).

depthfirst(Path,Node,[Node|Path]):-

goal(Node).

depthfirst(Path,Node,Sol):-

s(Node,Node1),

not(member(Node1,Path)),

depthfirst([Node|Path],Node1,Sol).

OUTPUT:

solve(a,Sol).

Sol=[j,e,b,a];

IT DEPT-Artificial Intelligence and Data Science Lab Page 28

Sol=[f,c,a];

Program: BFS

s(a,b).

s(a,c).

s(b,d).

s(b,e).

s(c,f).

s(c,g).

s(d,h).

s(e,i).

s(e,j).

s(f,k).

goal(f).

goal(j).

solve(Start,Solution).

breadthfirst([[Start]],Solution).

breadthfirst([[Node|Path]|_],[Node|Path]):- goal(Node).

breadthfirst([Path|Paths],Solution):-

extend(Path,NewPaths),write(NewPaths),nl,conc(Paths,NewPaths,Paths1),breadthfirst(Paths1,Solution).

extend([Node|Path],NewPaths):-

bagof([NewNode,Node|Path],(s(Node,NewNode),not(member(NewNode,[Node|Path]))),NewPaths),!.

extend(_,[]).

conc([],L,L).

conc([X|L1],L2,[X|L3]):-write('conc'),write(X),write(''),write(L1),write(''),write(L2),conc(L1,L2,L3).

Output:

solve(a,Solution).

Solution=[j,e,b,a];

Solution=[f,c,a];

IT DEPT-Artificial Intelligence and Data Science Lab Page 29

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 30

DATA SCIENCE : R PROGRAMMING

1.a.Write a R program to create a list containing strings, numbers, vectors and logical values.

Source code:

list_data = list("Python", "PHP", c(5, 7, 9, 11), TRUE, 125.17, 75.83)

print("Data of the list:")

print(list_data)

Output:

[1] "Data of the list:"

[[1]]

[1] "Python"

[[2]]

[1] "PHP"

[[3]]

[1] 5 7 9 11

[[4]]

[1] TRUE

[[5]]

[1] 125.17

[[6]]

[1] 75.83

IT DEPT-Artificial Intelligence and Data Science Lab Page 31

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 32

1.b. Write a R program to merge two given lists into one list.

Source code:

n1 = list(1,2,3)

c1 = list("Red", "Green", "Black")

print("Original lists:")

print(n1)

print(c1)

print("Merge the said lists:")

mlist = c(n1, c1)

print("New merged list:")

print(mlist)

Output:
[1] "Original lists:"

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[1]]

[1] "Red"

[[2]]

[1] "Green"

[[3]]

[1] "Black"

[1] "Merge the said lists:"

[1] "New merged list:"

[[1]]

[1] 1
[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] "Red"
[[5]]

[1] "Green"

[[6]]

[1] "Black"

IT DEPT-Artificial Intelligence and Data Science Lab Page 33

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 34

1.c Write a R program to create a list containing a vector, a matrix and a list and give names to

the elements in the list. Access the first and second element of the list.

Source code:

list_data <- list(c("Red","Green","Black"), matrix(c(1,3,5,7,9,11), nrow = 2), list("Python", "PHP", "Java"))

print("List:")

print(list_data)
names(list_data) = c("Color", "Odd numbers", "Language(s)")
print("List with column names:")

print(list_data)

print('1st element:')

print(list_data[1])

print('2nd element:')

print(list_data[2])

Output:
[1] "List:"

[[1]]

[1] "Red""Green""Black"

[[2]]

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 3 7 11

[[3]]

[[3]][[1]]

[1] "Python"

[[3]][[2]]

[1] "PHP"

[[3]][[3]]

[1] "Java"

[1] "List with column names:"

$Color

[1] "Red""Green""Black"

$`Odd numbers`

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 3 7 11

IT DEPT-Artificial Intelligence and Data Science Lab Page 35

$`Language(s)`

$`Language(s)`[[1]]

[1] "Python"

$`Language(s)`[[2]]

[1] "PHP"

$`Language(s)`[[3]]

[1] "Java"

[1] "1st element:"

$Color

[1] "Red""Green""Black"

[1] "2nd element:"

$`Odd numbers`

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 3 7 11

IT DEPT-Artificial Intelligence and Data Science Lab Page 36

Signature of the Faculty

2.a. Write a R program to find factors of a number

print_factors <- function(x) {

print(paste("The factors of",x,"are:"))

for(i in 1:x) {

if((x %% i) == 0) {

print(i)

}

}

}

Output:

> print_factors(120)

[1] "The factors of 120 are:"

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 8

[1] 10

[1] 12

[1] 15

[1] 20

[1] 24

[1] 30

[1] 40

[1] 60

[1] 120

IT DEPT-Artificial Intelligence and Data Science Lab Page 36

IT DEPT-Artificial Intelligence and Data Science Lab Page 37

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 38

2.b. Write a R program to create an ordered factor from data consisting of the names of
months.

mons_v = c("March","April","January","November","January",

"September","October","September","November","August","February",

"January","November","November","February","May","August","February",

"July","December","August","August","September","November","September",

"February","April")

print("Original vector:")

print(mons_v)

f = factor(mons_v)

print("Ordered factors of the said vector:")

print(f)

print(table(f))

Output:

1] "Original vector:"

[1] "March" "April" "January" "November" "January" "September"

[7] "October" "September" "November" "August" "February" "January"

[13] "November" "November" "February" "May" "August" "February"

[19] "July" "December" "August" "August" "September" "November"

[25] "September" "February" "April"

[1] "Ordered factors of the said vector:"

[1] March April January November January September October

[8] September November August February January November November

[15] February May August February July December August

[22] August September November September February April

11 Levels: April August December February January July March May ... September

f

April August December February January July March May

2 4 1 4 3 1 1 1

November October September

5 1 4

IT DEPT-Artificial Intelligence and Data Science Lab Page 39

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 40

2.c.Write a R program to Read the data from same and different directory.

Read data from current Directory

Determine Your Working Directory: The getwd() function will print your curent working directory to the
console:

getwd()

[1] "C:/Users/R"
Determine Directory Contents:You can print the contents of your working directory with functions

dir()&list.files().

These don’t require additional arguments.
dir()

list.files()

[1] "2018-08-17 Reading in Data.rmd""2018-08-17.R"

[3] "2018-08-17_Reading_in_Data.rmd"

Source code:

list.files(path=".", pattern=NULL, all.files=FALSE, full.names=FALSE)

output:
“a.rtf”

“hello.pdf”

“github”

“Hello.cpp”

Read data from different Directory
Changing Working Directories: You can change your working directory with function setwd().

Source code:
setwd("C:/R-tutorial")

dir()

list.files()

output:
“R-tutorial.txt”

dir←”C:/users/Data”

Source code:
BB←file.path(dir,”bodybuilders.txt”)

BB← read.table(file=bodybuilder,header=TRUE)

output:
>BB

group weight height proteinintake

bodybuilder 96.6 185.70 167.9

bodybuilder 90.2 179.60 102.4

IT DEPT-Artificial Intelligence and Data Science Lab Page 41

IT DEPT-Artificial Intelligence and Data Science Lab Page 42

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 43

3.a) Write a R program to read a CSV file

data <- read.csv("input.csv")

print(data)

Output:
id, name, salary, start_date, dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT

7 7 Simon 632.80 2013-07-30 Operations

8 8 Guru 722.50 2014-06-17 Finance

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 44

3.b Write R program to read Text file

Read a text file using read.delim()

myData = read.delim(“1.txt”, header = FALSE)

print(myData)

Output:

Ok!! Welcome to Data Science

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 45

3.c Write a R Program to read and load data from larger datasets.

Source code:

library(data.table)

chicrimes←fread(“chicrimes.csv”)

nrow(chicrimes)

dim(chicrimes)

chicrimes[1:3]

names(chicrimes)

chicrimes(,.N,by=District]

output:

6450939

6450939 22

ID casenumber date

8758086 HV432922 08/15/2012

8758087 HV432927 08/15/2012

IT DEPT-Artificial Intelligence and Data Science Lab Page 46

IT DEPT-Artificial Intelligence and Data Science Lab Page 47

4. Install the necessary R packages and apply data manipulation packages- dplyr,

data.table,reshape2, tidyr,Lubridate.

dplyr Package

dplyr package provides various important functions that can be used for Data Manipulation. These are:

filter() Function: For choosing cases and using their values as a base for doing

so.# Create a data frame with missing data.

d < - data.frame(name=c("Abhi", "Bhavesh", "Chaman", "Dimri"),
age=c(7, 5, 9, 16),

ht=c(46, NA, NA,

69),

school=c("yes", "yes", "no", "no"))

d

Finding rows with NA

value d % > %
filter(is.na(ht))

Finding rows with no NA

valued % > % filter(! is.na(ht))

Output:

A tibble: 4 x 4

name age ht school

1 Abhi 7 46 yes

2 Bhavesh 5 NA yes

3 Chaman 9 NA no

4 Dimri 16 69 no

A tibble: 2 x 4

name age ht school

1 Bhavesh 5 NA yes

2 Chaman 9 NA no

A tibble: 2 x 4

name age ht school

1 Abhi 7 46 yes

2 Dimri 16 69 no

IT DEPT-Artificial Intelligence and Data Science Lab Page 48

arrange(): For reordering of the cases.

Create a data frame with missing data

d <- data.frame(name = c("Abhi", "Bhavesh", "Chaman", "Dimri"),

age = c(7, 5, 9, 16),

ht = c(46, NA, NA, 69),

school = c("yes", "yes", "no", "no"))

Arranging name according to the age

d.name<- arrange(d, age)

print(d.name)

Output:

A tibble: 4 x 4
name age ht school

1 Bhavesh 5 NA yes

2 Abhi 7 46 yes

3 Chaman 9 NA no
4 Dimri 16 69 no

IT DEPT-Artificial Intelligence and Data Science Lab Page 49

select() and rename(): For choosing variables and using their names as a base for doing so.

Create a data frame with missing data

d < - data.frame(name=c("Abhi", "Bhavesh","Chaman", "Dimri"),
age=c(7, 5, 9, 16),

ht=c(46, NA, NA, 69),

school=c("yes", "yes", "no", "no"))

startswith() function to print only ht data

select(d, starts_with("ht"))

-startswith() function to print

everything except ht data

select(d, -starts_with("ht"))

Printing column 1 to 2

select(d, 1: 2)
Printing data of column

heading containing 'a'

select(d, contains("a"))

Printing data of column
heading which matches 'na'
select(d, matches("na"))

Output:

A tibble: 4 x 1

ht

1 46

2 NA

3 NA

4 69

A tibble: 4 x 3

name age school

1 Abhi 7 yes

2 Bhavesh 5 yes

3 Chaman 9 no

4 Dimri 16 no

A tibble: 4 x 2

name age

1 Abhi 7

2 Bhavesh 5
3 Chaman 9

4 Dimri 16

A tibble: 4 x 2

name age

1 Abhi 7

2 Bhavesh 5
3 Chaman 9

4 Dimri 16

IT DEPT-Artificial Intelligence and Data Science Lab Page 50

A tibble: 4 x 1

name

1 Abhi

2 Bhavesh
3 Chaman

4 Dimri

summarise(): Condensing various values to one value.

Create a data frame with missing data

d <- data.frame(name = c("Abhi", "Bhavesh","Chaman", "Dimri"),

age = c(7, 5, 9, 16),

ht = c(46, NA, NA, 69),

school = c("yes", "yes", "no", "no"))

Calculating mean of age

summarise(d, mean = mean(age))

Calculating min of age

summarise(d, med = min(age))

Calculating max of age

summarise(d, med = max(age))

Calculating median of age

summarise(d, med = median(age))

Output:

A tibble: 1 x 1

IT DEPT-Artificial Intelligence and Data Science Lab Page 51

mean

1 9.25
A tibble: 1 x 1

med

1 5

A tibble: 1 x 1

2

3 med

4 116

5 # A tibble: 1

x 1med

6 1 8

IT DEPT-Artificial Intelligence and Data Science Lab Page 52

data.table

The purpose of data.table is to create tabular data.

Syntax:

install.packages('data.table')

To merge two data.table objects

Load data.table package

library(“data.table”)

print(“first class”)

Create first data.table

class1 <- data.table(stu_name = c('Naveen','Nupur','Ritika','Praveen'), Subjects =

c('Hindi','English','Maths','Science'), Marks1 = c(89,78,72,64))

Print first data.table

print(class1)

print("second class")

Create second data.table

class2 <- data.table(stu_name = c('Naveen','Nupur','Ritika','Praveen'), Subjects =

c('Hindi','English','Maths','Science'), Marks2 = c(56,64,53,88))

Print second data.table

print(class2)

print("merge first and second class")

Merge data.tables

merge_class <- merge.data.table(class1, class2, by.x = "Subjects", by.y = "Subjects")

Print merged data.table

print(merge_class)

IT DEPT-Artificial Intelligence and Data Science Lab Page 53

select subset of columns from the data table

load data.table package

library("data.table")

create data table with matrix with 20 elements

4 rows and 5 columns

data= data.table(matrix(1:20, nrow=4,ncol = 5))
display the subset that include v1 and v3 columns
print(data[, c("V1", "V3"), with = FALSE])

display the subset that include v1 , v2 and v3 columns

print(data[, c("V1","V2", "V3"), with = FALSE])

display the subset that include v2,v3,v4 and v5 columns

print(data[, c("V2", "V3","V4","V5"), with = FALSE])

Output:

IT DEPT-Artificial Intelligence and Data Science Lab Page 54

reshape2

The reshape2 package facilitates extracting values such as means from many columns quickly and easily.

library(reshape2)

mydata <- data.frame(id=c(1,1,2,2),time=c(1,2,1,2),x1=c(5,3,6,2),x2=c(6,5,1,4))

means of each of the “x” columns (x1, x2) over just the id. Without reshape, it would look like this:
aggregate(cbind(x1, x2) ~ id, mydata, mean)

id x1 x2
1 1 4 5.5

2 2 4 2.5

This works, but we must specifiy the name of every “x” column. Suppose there are hundreds, and we want to

calculate all of them automatically? This is where reshape2 helps. First, we “melt” the data:

melt_mydata <- melt(mydata, id=c("id", "time"))

melt_mydata

id time variable value
1 1 1 x1 5

2 1 2 x1 3

3 2 1 x1 6

4 2 2 x1 2

5 1 1 x2 6

6 1 2 x2 5

7 2 1 x2 1
8 2 2 x2 4

Now that the data is melted, you can easily get the means for each melted column, regardless of how many there

are.

means_by_id <- dcast(melt_mydata, id ~ variable, mean)

means_by_id

id x1 x2

1 1 4 5.5

2 2 4 2.5
The old reshape package had a cast method. Note that reshape2 has an acast method, which returns a

vector/matrix/array, and dcast, which returns a data.matrix.

Note that not need to specify the names of the melted columns. If you wanted to restrict them, means for all of

the “x” columns except x2.

means_by_id <- dcast(melt_mydata[melt_mydata$variable!=c("x2"),], id ~ variable, mean)

means_by_id

id x1
1 1 4

2 2 4
But what if we wanted means by the time column, instead of id? No problem.

means_by_time <- dcast(melt_mydata, time ~ variable, mean)

means_by_time

time x1 x2

1 1 5.5 3.5

2 2 2.5 4.5

IT DEPT-Artificial Intelligence and Data Science Lab Page 55

Now just to demonstrate a bit more of the flexibility, let’s expand the data set.

mydata <- data.frame(id=c(1,1,2,2),time=c(1,2,1,2),x1=c(3,4,7,8),x2=c(4,1,0,3),x3=c(7,1,9,11),x4=c(3,2,7,9))

mydata

id time x1 x2 x3 x4
1 1 1 3 4 7 3

2 1 2 4 1 1 2
3 2 1 7 0 9 7
4 2 2 8 3 11 9

Now we are up to four “x” columns. Let’s try the same approach as before.

melt_mydata <- melt(mydata, id=c("id", "time"))

means_by_id <- dcast(melt_mydata, id ~ variable, mean)

means_by_id

id x1 x2 x3 x4

1 1 3.5 2.5 4 2.5

2 2 7.5 1.5 10 8.0

IT DEPT-Artificial Intelligence and Data Science Lab Page 56

IT DEPT-Artificial Intelligence and Data Science Lab Page 57

tidyr

The sole purpose of the tidyr package is to simplify the process of creating tidy data. Tidy data describes a

standard way of storing data that is used wherever possible throughout the tidyverse

install.packages("tidyverse")

alternatively, to install just tidyr package type this:

install.packages("tidyr")

Define a dataset tidy_dataframe that contains data about the frequency of people in a particular group.

load the tidyr package

library(tidyr)
n = 10

creating a data frame

tidy_dataframe = data.frame(

S.No = c(1:n),

Group.1 = c(23, 345, 76, 212, 88,

199, 72, 35, 90, 265),

Group.2 = c(117, 89, 66, 334, 90,

101, 178, 233, 45, 200),

Group.3 = c(29, 101, 239, 289, 176,

320, 89, 109, 199, 56))

print the elements of the data frame

tidy_dataframe

Output:

S.No Group.1 Group.2 Group.3

1 1 23 117 29

2 2 345 89 101

3 3 76 66 239
4 4 212 334 289

5 5 88 90 176

6 6 199 101 320

7 7 72 178 89

8 8 35 233 109

9 9 90 45 199

10 10 265 200 56

IT DEPT-Artificial Intelligence and Data Science Lab Page 58

gather() function: It takes multiple columns and gathers them into key-value pairs. Basically it makes “wide”

data longer. The gather() function will take multiple columns and collapse them into key-value pairs,

duplicating all other columns as needed.

using gather() function on tidy_dataframelong <- tidy_dataframe %>%

gather(Group, Frequency,

Group.1:Group.3)

print the data frame in a long format

long

Output:

S.No Group Frequency

1 1 Group.1 23

2 2 Group.1 345

3 3 Group.1 76

4 4 Group.1 212

5 5 Group.1 88

6 6 Group.1 199

7 7 Group.1 72

8 8 Group.1 35

9 9 Group.1 90

10 10 Group.1 265

11 1 Group.2 117

12 2 Group.2 89

13 3 Group.2 66

14 4 Group.2 334

15 5 Group.2 90

16 6 Group.2 101

17 7 Group.2 178

18 8 Group.2 233

19 9 Group.2 45

20 10 Group.2 200

21 1 Group.3 29

22 2 Group.3 101

23 3 Group.3 239

24 4 Group.3 289

25 5 Group.3 176

26 6 Group.3 320

IT DEPT-Artificial Intelligence and Data Science Lab Page 59

27 7 Group.3 89

28 8 Group.3 109

29 9 Group.3 199
30 10 Group.3 56

IT DEPT-Artificial Intelligence and Data Science Lab Page 60

IT DEPT-Artificial Intelligence and Data Science Lab Page 61

separate() function: It converts longer data to a wider format. The separate() function turns a single character

column into multiple columns.

import tidyr package

library(tidyr)

long <- tidy_dataframe %>%
gather(Group, Frequency,

Group.1:Group.3)

use separate() function to make data wider
separate_data <- long %>%

separate(Group, c("Allotment",

"Number"))

print the wider format
separate_data

Output:

S.No Allotment Number Frequency
1 1 Group 1 23
2 2 Group 1 345

3 3 Group 1 76

4 4 Group 1 212

5 5 Group 1 88
6 6 Group 1 199

7 7 Group 1 72

8 8 Group 1 35

9 9 Group 1 90
10 10 Group 1 265

11 1 Group 2 117

12 2 Group 2 89

13 3 Group 2 66

14 4 Group 2 334

15 5 Group 2 90

16 6 Group 2 101

17 7 Group 2 178

18 8 Group 2 233
19 9 Group 2 45

20 10 Group 2 200

21 1 Group 3 29

22 2 Group 3 101

23 3 Group 3 239

24 4 Group 3 289

25 5 Group 3 176

26 6 Group 3 320
27 7 Group 3 89

28 8 Group 3 109

29 9 Group 3 199

30 10 Group 3 56

IT DEPT-Artificial Intelligence and Data Science Lab Page 62

Lubridate

Lubridate is an R package that makes it easier to work with dates and times.

install.packages("lubridate")

1. ymd(20101215)
#> [1] "2010-12-15"

mdy("4/1/17")

#> [1] "2017-04-01"
Simple functions to get and set components of a date-time, such as year(), month(), mday(), hour(), minute() and second():

bday <- dmy("14/10/1979")

month(bday)

#> [1] 10
wday(bday, label = TRUE)

#> [1] Sun

#> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

year(bday) <- 2016

wday(bday, label = TRUE)

#> [1] Fri

#> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat
Helper functions for handling time zones: with_tz(), force_tz()
time <- ymd_hms("2010-12-13 15:30:30")

time

#> [1] "2010-12-13 15:30:30 UTC"

Changes printing

with_tz(time, "America/Chicago")

#> [1] "2010-12-13 09:30:30 CST"

force_tz(time, "America/Chicago")

#> [1] "2010-12-13 15:30:30 CST

IT DEPT-Artificial Intelligence and Data Science Lab Page 63

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 64

5 Write R Programs to implement decision tree and K-Nearest Neighbor algorithms.

Use the below command in R console to install the package. Install the dependent packages if any.

install.packages("party")

The package "party" has the function ctree() which is used to create and analyze decison tree.

Syntax

The basic syntax for creating a decision tree in R is −

ctree(formula, data)

Following is the description of the parameters used −

• formula is a formula describing the predictor and response variables.

• data is the name of the data set used.

data set named readingSkills to create a decision tree. It describes the score of someone's readingSkills if we

know the variables "age","shoesize","score" and whether the person is a native speaker or not.

Here is the sample data.

Load the party package. It will automatically load other

dependent packages.

library(party)

Print some records from data set readingSkills.

print(head(readingSkills))

it produces the following result and chart −

nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085

6 yes 10 30.07843 52.83124

Loading required package: methods

Loading required package: grid

...............................

...............................

IT DEPT-Artificial Intelligence and Data Science Lab Page 65

 Example

Use the ctree() function to create the decision tree and see its graph.
Load the party package. It will automatically load other

dependent packages.
library(party)

Create the input data frame.

input.dat <- readingSkills[c(1:105),]

Give the chart file a name.

png(file = "decision_tree.png")

Create the tree.

output.tree <- ctree(

nativeSpeaker ~ age + shoeSize + score,

data = input.dat)

Plot the tree.

plot(output.tree)

Save the file.

dev.off()

it produces the following result −

null device

1
Loading required package: methods

Loading required package: grid

Loading required package: mvtnorm

Loading required package: modeltools

Loading required package: stats4

Loading required package: strucchange

Loading required package: zoo

Attaching package: ‘zoo’
The following objects are masked from ‘package:base’:

as.Date, as.Date.numeric

Loading required package: sandwich

IT DEPT-Artificial Intelligence and Data Science Lab Page 66

IT DEPT-Artificial Intelligence and Data Science Lab Page 67

IT DEPT-Artificial Intelligence and Data Science Lab Page 68

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 69

K-Nearest Neighbor algorithm

K-Nearest Neighbor or K-NN is a Supervised Non-linear classification algorithm. K-NN is a Non-parametric

algorithm i.e it doesn’t make any assumption about underlying data or its distribution. It is one of the simplest

and widely used algorithm which depends on it’s k value(Neighbors) and finds it’s applications in many

industries like finance industry, healthcare industry etc.

In the KNN algorithm, K specifies the number of neighbors and its algorithm is as follows:

1. Choose the number K of neighbor.

2. Take the K Nearest Neighbor of unknown data point according to distance.

3. Among the K-neighbors, Count the number of data points in each category.

4. Assign the new data point to a category, where you counted the most neighbors.

The Dataset

Iris dataset consists of 50 samples from each of 3 species of Iris(Iris setosa, Iris virginica, Iris versicolor) and a

multivariate dataset introduced by British statistician and biologist Ronald Fisher in his 1936 paper The use of

multiple measurements in taxonomic problems. Four features were measured from each sample i.e length and

width of the sepals and petals and based on the combination of these four features, Fisher developed a linear

discriminant model to distinguish the species from each other.

Loading

data

data(iris)

Structure

str(iris)

IT DEPT-Artificial Intelligence and Data Science Lab Page 70

Performing K Nearest Neighbor on Dataset
Using the K-Nearest Neighbor algorithm on the dataset which includes 11 persons and 6 variables or attributes.

Installing Packages

install.packages("e1071")

install.packages("caTools")

install.packages("class")

Loading package

library(e1071)

library(caTools)

library(class)

Loading data

data(iris)

head(iris)

Splitting data into train

and test data

split <- sample.split(iris, SplitRatio = 0.7)

train_cl <- subset(iris, split == "TRUE")

test_cl <- subset(iris, split == "FALSE")

Feature Scaling

train_scale <- scale(train_cl[, 1:4])

test_scale <- scale(test_cl[, 1:4])

Fitting KNN Model

to training dataset

classifier_knn <- knn(train = train_scale,

test = test_scale,
cl = train_cl$Species,

k = 1)

classifier_knn

Confusion Matrix

cm <- table(test_cl$Species, classifier_knn)

cm

Model Evaluation - Choosing K
Calculate out of Sample error

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 3

classifier_knn <- knn(train = train_scale,
test = test_scale,

cl = train_cl$Species,

k = 3)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 5

classifier_knn <- knn(train = train_scale,

test = test_scale,

cl = train_cl$Species,

k = 5)

IT DEPT-Artificial Intelligence and Data Science Lab Page 71

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 7

classifier_knn <- knn(train = train_scale,
test = test_scale,

cl = train_cl$Species,

k = 7)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 15

classifier_knn <- knn(train = train_scale,

test = test_scale,
cl = train_cl$Species,

k = 15)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 19

classifier_knn <- knn(train = train_scale,

test = test_scale,
cl = train_cl$Species,

k = 19)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

Output:

1. Model classifier_knn(k=1):

The KNN model is fitted with a train, test, and k value. Also, the Classifier Species feature is fitted in the
model.

confusion Matrix:

So, 20 Setosa are correctly classified as Setosa. Out of 20 Versicolor, 17 Versicolor are correctly classified as

Versicolor and 3 are classified as virginica. Out of 20 virginica, 17 virginica are correctly classified as virginica

and 3 are classified as Versicolor.

Model Evaluation:

(k=1)

IT DEPT-Artificial Intelligence and Data Science Lab Page 72

The model achieved 90% accuracy with k is 1.

K=3)

The model achieved 88.33% accuracy with k is 3 which is lower than when k was 1.

(K=5)

The model achieved 91.66% accuracy with k is 5 which is more than when k was 1 and 3.

(K=7)

The model achieved 93.33% accuracy with k is 7 which is more than when k was 1, 3, and 5.

(K=15)

The model achieved 95% accuracy with k is 15 which is more than when k was 1, 3, 5, and 7.

(K=19)

The model achieved 95% accuracy with k is 19 which is more than when k was 1, 3, 5, and 7.

Its same accuracy when k was 15 which means now increasing k values doesn’t affect the accuracy.

So, K Nearest Neighbor is widely used in the industry.

IT DEPT-Artificial Intelligence and Data Science Lab Page 73

IT DEPT-Artificial Intelligence and Data Science Lab Page 74

Signature of the Faculty

IT DEPT-Artificial Intelligence and Data Science Lab Page 75

6. Build a linear regression model and logistic regression model, check the model on a test

data andpredict the numerical quantities.

Linear Regression: It is a commonly used type of predictive analysis. It is a statistical approach for modeling the

relationship between a dependent variable and a given set of independent variables.

Input Data

Below is the sample data representing the observations −# Values of height

151, 174, 138, 186, 128, 136, 179, 163, 152, 131

Values of weight.

63, 81, 56, 91, 47, 57, 76, 72, 62, 48

lm() Function

This function creates the relationship model between the predictor and the response variable.

Syntax

The basic syntax for lm() function in linear regression is
−lm(formula,data)

Following is the description of the parameters used −

1. formula is a symbol presenting the relation between x and y.

2. data is the vector on which the formula will be applied.

Create Relationship Model & get the Coefficients

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm()

function.relation <-

lm(y~x) print(relation)

it produces the following result

−Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-38.4551 0.6746

Get the Summary of the Relationship

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm()

function.relation <-

lm(y~x)

print(summary(relation)

)

it produces the following result

−Call:

lm(formula = y ~

x)Residuals:

IT DEPT-Artificial Intelligence and Data Science Lab Page 76

Min 1Q Median 3Q Max

-6.3002 -1.6629 0.0412 1.8944 3.9775

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -38.45509 8.04901 -4.778 0.00139 **

x 0.67461 0.05191 12.997 1.16e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491

F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

predict()

FunctionSyntax

The basic syntax for predict() in linear regression is

−predict(object, newdata)

Following is the description of the parameters used −

1. object is the formula which is already created using the lm() function.

2. newdata is the vector containing the new value for predictor variable.

Predict the weight of new persons

The predictor vector.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

The resposne vector.

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm()

function.relation <-

lm(y~x)

Find weight of a person with height

170.a <- data.frame(x = 170)

result <-

predict(relation,a)

print(result)

it produces the following result

−1

76.22869

Visualize the Regression Graphically

Create the predictor and response variable.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

relation <- lm(y~x)

Give the chart file a name.

png(file =

"linearregression.png")# Plot

the chart.

plot(y,x,col = "blue",main = "Height & Weight Regression",

http://tpcg.io/A1a3fn

IT DEPT-Artificial Intelligence and Data Science Lab Page 77

abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in
cm")# Save the file.

dev.off()

it produces the following result −

The Logistic Regression is a regression model in which the response variable (dependent variable) has

categorical values such as True/False or 0/1. It actually measures the probability of a binary response

as the value of response variable based on the mathematical equation relating it with the predictor

variables.

The general mathematical equation for logistic regression

is −y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

Following is the description of the parameters used −

1. y is the response variable.

2. x is the predictor variable.

3. a and b are the coefficients which are numeric constants.

The function used to create the regression model is the glm() function.

Syntax

The basic syntax for glm() function in logistic regression is −

glm(formula,data,family)

Following is the description of the parameters used −

1. formula is the symbol presenting the relationship between the variables.

2. data is the data set giving the values of these variables.

IT DEPT-Artificial Intelligence and Data Science Lab Page 78

3. family is R object to specify the details of the model. It's value is binomial for logistic regression.

Example

The in-built data set "mtcars" describes different models of a car with their various engine specifications.

In "mtcars" data set, the transmission mode (automatic or manual) is described by the column am which is

a binary value (0 or 1). We can create a logistic regression model between the columns "am" and 3 other

columns - hp, wtand cyl.

Select some columns form mtcars.

input <- mtcars[,c("am","cyl","hp","wt")]

print(head(input))

When we execute the above code, it produces the following result −

am cyl hp wt

Mazda RX4 1 6 110 2.620

Mazda RX4 Wag 1 6 110 2.875

Datsun 710 1 4 93 2.320

Hornet 4 Drive 0 6 110 3.215

Hornet Sportabout 0 8 175 3.440
Valiant 0 6 105 3.460

Create Regression Model

We use the glm() function to create the regression model and get its summary for analysis.

Input <- mtcars[,c("am","cyl","hp","wt")]

am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)

print(summary(am.data))

When we execute the above code, it produces the following result −
Call:

glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)

Deviance Residuals:

Min 1Q Median 3Q Max
-2.17272 -0.14907 -0.01464 0.14116 1.27641

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 19.70288 8.11637 2.428 0.0152 *
cyl 0.48760 1.07162 0.455 0.6491

hp 0.03259 0.01886 1.728 0.0840 .
wt -9.14947 4.15332 -2.203 0.0276 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 43.2297 on 31 degrees of freedom

Residual deviance: 9.8415 on 28 degrees of freedom

AIC: 17.841

Number of Fisher Scoring iterations: 8

IT DEPT-Artificial Intelligence and Data Science Lab Page 79

IT DEPT-Artificial Intelligence and Data Science Lab Page 80

IT DEPT-Artificial Intelligence and Data Science Lab Page 81

Signature of the Faculty

	Vision
	Mission
	PEO1 – ANALYTICAL SKILLS:
	PEO2 – TECHNICAL SKILLS:
	PEO3 – SOFT SKILLS:
	PEO4 – PROFESSIONAL ETHICS:
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	1) Write a Prolog program for the usage of all arithmetic Operators.
	Output:
	Program:
	output:
	Program: (1)
	Output:
	4. Write a Prolog program for depicting and inferring from the given Family relationship diagram.
	Program:
	Output:

	Program: (2)
	Output: (1)

	6. Construct Prolog program to implement Depth first and Breadth first Search.
	Program: DFS
	Program: BFS

	DATA SCIENCE : R PROGRAMMING
	1.a.Write a R program to create a list containing strings, numbers, vectors and logical values. Source code:
	Output:
	Source code:
	Output: (1)
	1.c Write a R program to create a list containing a vector, a matrix and a list and give names to the elements in the list. Access the first and second element of the list.
	Output: (2)
	Signature of the Faculty

	2.b. Write a R program to create an ordered factor from data consisting of the names of months.
	Output:

	2.c.Write a R program to Read the data from same and different directory.
	Read data from current Directory
	Source code:
	Read data from different Directory
	Source code: (1)
	output:
	output: (1)

	3.a) Write a R program to read a CSV file
	data <- read.csv("input.csv") print(data)

	3.b Write R program to read Text file
	3.c Write a R Program to read and load data from larger datasets.
	Source code:
	output:
	dplyr Package
	Output:
	Output: (1)
	Output: (2)
	Output: (3)
	data.table
	Syntax:
	To merge two data.table objects Load data.table package library(“data.table”)
	Output: (4)
	tidyr
	Output: (5)
	Output: (6)
	Output: (7)
	Lubridate

	5 Write R Programs to implement decision tree and K-Nearest Neighbor algorithms.
	Syntax
	 Example
	Signature of the Faculty
	The Dataset
	Performing K Nearest Neighbor on Dataset
	# Confusion Matrix
	Output:
	confusion Matrix:
	Model Evaluation: (k=1)
	K=3)
	(K=5)
	(K=7)
	(K=15)
	(K=19)

	6. Build a linear regression model and logistic regression model, check the model on a test data andpredict the numerical quantities.
	Input Data
	lm() Function
	Syntax
	Create Relationship Model & get the Coefficients
	Get the Summary of the Relationship
	predict() FunctionSyntax
	Predict the weight of new persons
	Visualize the Regression Graphically
	The Logistic Regression is a regression model in which the response variable (dependent variable) has categorical values such as True/False or 0/1. It actually measures the probability of a binary response as the value of response variable based on th...
	Syntax (1)
	Example
	# Select some columns form mtcars.
	Create Regression Model
	Input <- mtcars[,c("am","cyl","hp","wt")]
	Signature of the Faculty

